00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 #include "slidingModeControlMRPMW.h"
00014 
00015 
00016 
00017 
00018 slidingModeControlMRPMW::slidingModeControlMRPMW( )
00019 {
00020 }
00021 
00022 
00023 
00024 
00025 
00026 slidingModeControlMRPMW::slidingModeControlMRPMW( Whorl* ptr_whorl )
00027 {
00028         m_whorl = ptr_whorl;
00029         int retcode = Initialize( );
00030         retcode = 0;
00031 }
00032 
00033 
00034 
00035 
00036 slidingModeControlMRPMW::~slidingModeControlMRPMW( ) 
00037 {
00038 
00039 }
00040 
00041 
00042 
00043 
00044 int slidingModeControlMRPMW::Initialize( ) 
00045 {
00046         m_controlTorque.initialize(3);
00047 
00048         m_uMax = 1.5; 
00049 
00050         
00051         m_gainMRPError.initialize(3,3);
00052 
00053 
00054 
00055       m_gainMRPError(1,1) = 0.05;
00056         m_gainMRPError(2,2) = 0.05;
00057         m_gainMRPError(3,3) = 0.1;
00058 
00059         m_gainMRPRate.initialize(3,3);
00060         
00061         for ( int i=1; i<4; i++ )
00062         {
00063                 m_gainMRPRate(i,i) = 4*pow( m_gainMRPError(i,i), 0.5 );
00064         }
00065         
00066         
00067         A = FindA( );
00068 
00069         
00070         MOI_sw = FindMOI_sw();
00071 
00072         
00073         Quaternion qri( 0.0, 0.0, 0.0, 1.0 );
00074         m_quaternionReference(1) = qri(1);
00075         m_quaternionReference(2) = qri(2);
00076         m_quaternionReference(3) = qri(3);
00077         m_quaternionReference(4) = qri(4);
00078         m_mrpReference = ModifiedRodriguezParameters( qri );
00079         m_angularRateReference(1) = 0;
00080         m_angularRateReference(2) = 0.0;
00081         m_angularRateReference(3) = 0.0; 
00082 
00083         ssfTime time;
00084         time = Now( );
00085         m_previousTime = time.GetSeconds( );
00086         
00087         m_estimateInertiaInv.initialize(3,3);
00088         m_estimateInertiaInv(_(1,3),_(1,3)) = matrixInv3x3( m_whorl->GetMOI( ) );
00089         
00090         m_normEstimateInertiaInv = norm2( m_estimateInertiaInv );
00091 
00092         m_normEstimateInertia = norm2( m_whorl->GetMOI( ) ); 
00093 
00094         m_estimateB.initialize(3,3);
00095         m_estimateB(_(1,3),_(1,3)) = matrixInv3x3( m_whorl->GetMOI( ) );
00096 
00097         m_estimateBinv.initialize(3,3);
00098         m_estimateBinv(_(1,3),_(1,3)) = matrixInv3x3( m_estimateB ); 
00099 
00100         
00101 
00102         m_phi.initialize(3);
00103         m_phi(1) = 0.5; 
00104         m_phi(2) = 0.5; 
00105         m_phi(3) = 0.5; 
00106         
00107 
00108 
00109 
00110 
00111 
00112         m_eta.initialize(3);
00113         m_eta(1) = 0.04; 
00114         m_eta(2) = 0.04; 
00115         m_eta(3) = 0.04; 
00116         
00117 
00118 
00119 
00120 
00121 
00122         m_torqueMax = 0.02; 
00123         
00124         m_D_I.initialize(3,3); 
00125         m_D_I(1,1) = 0.35, m_D_I(1,2)=0.05, m_D_I(1,3)=0.05;
00126         m_D_I(2,1) = 0.05, m_D_I(2,2)=0.35, m_D_I(2,3)=0.05;
00127         m_D_I(3,1) = 0.05, m_D_I(3,2)=0.05, m_D_I(3,3)=0.35;
00128         m_normD_I = norm2( m_D_I );
00129 
00130         m_D_w.initialize(3,3);
00131         m_D_w(1,1) = 0.1, m_D_w(1,2) = 0.088, m_D_w(1,3) = 0.088;       
00132         m_D_w(2,1) = 0.088, m_D_w(2,2) = 0.1, m_D_w(2,3) = 0.088;       
00133         m_D_w(3,1) = 0.088, m_D_w(3,2) = 0.088, m_D_w(3,3) = 0.1;       
00134 
00135         
00136         
00137 
00138 
00139         
00140         m_D_B.initialize(3,3);
00141         
00142         m_D_B(_(1,3),_(1,3)) = matrixInv3x3( m_whorl->GetMOI( ) ) * ( m_D_w + m_D_I + m_D_I*m_D_w )*m_whorl->GetMOI( );
00143 
00144         m_normD_B = norm2( m_D_B );
00145 
00146         m_D_D.initialize(3,3);
00147         m_D_D(_(1,3),_(1,3)) = m_D_w;
00148 
00149 
00150         m_normD_D = norm2( m_D_D );
00151 
00152         return( 0 );
00153 }
00154 
00155 int slidingModeControlMRPMW::Run()
00156 {
00157 
00158         Vector angularRate(3);
00159         angularRate = m_whorl->GetOmegaBL( );
00160 
00161 
00162 
00163 
00164         Vector MRP(3);
00165         MRP = m_whorl->GetMRP( );
00166 
00167 
00168 
00169       
00170 
00171         ssfTime currentTime;
00172         currentTime = Now( );
00173         ssfTime deltaTime;
00174         deltaTime = ( currentTime.GetSeconds( ) - m_previousTime );
00175         
00176         
00177 
00178  
00179         
00180         
00181         ReferenceTrajectory( deltaTime );
00182 
00183         ModifiedRodriguezParameters mrp;
00184         mrp.Set( MRP );
00185         ModifiedRodriguezParameters mrpReference;
00186         mrpReference.Set( m_mrpReference );
00187 
00188         
00189         Rotation RBN;
00190         RBN.Set( mrp ); 
00191         Rotation RRN;
00192         RRN.Set( mrpReference ); 
00193         Rotation RBR; 
00194         RBR = RBN*~RRN;
00195 
00196         
00197         Vector angularRateError(3);
00198         angularRateError = angularRate - RBR.GetDCM( )*(m_angularRateReference); 
00199         ModifiedRodriguezParameters mrpError;
00200         mrpError = mrp - mrpReference; 
00201         mrpError.Switch( 1 ); 
00202         cout << "MRP: " << mrp << endl;
00203         cout << "Rate: " << angularRate << endl;
00204         
00205         
00206         m_whorl->SetMRPError( mrpError );
00207         m_whorl->SetAngularRateError( angularRateError );
00208 
00209         
00210         m_whorl->SetReferenceOmegaBL( m_angularRateReference );
00211         m_whorl->SetReferenceQuaternion( m_quaternionReference );
00212 
00213        
00214         Vector wheelSpeed(3);
00215         double meastime;
00216 
00217         m_whorl->GetMomentumWheel("REACTION_X")->GetWheelSpeed( wheelSpeed(1), meastime );
00218         m_whorl->GetMomentumWheel("REACTION_Y")->GetWheelSpeed( wheelSpeed(2), meastime );
00219         m_whorl->GetMomentumWheel("REACTION_Z")->GetWheelSpeed( wheelSpeed(3), meastime );
00220 
00221 
00222 
00223 
00224 
00225 
00226         
00227         Vector hs(3);
00228         Vector w(3);
00229         Matrix ws(1,1);
00230         for ( int i=1; i<4; i++ )
00231         {
00232                 w(1) = A(1,i);
00233                 w(2) = A(2,i);
00234                 w(3) = A(3,i);
00235                 ws = ~w*angularRate;
00236                 hs(i) = MOI_sw(i,i) * ( ws(1,1) + wheelSpeed(i) );
00237         }
00238 
00239         Vector estimatef(3);
00240         estimatef = -m_estimateInertiaInv*skew( angularRate )*( m_whorl->GetMOI( )*angularRate + A*hs );
00241 
00242 
00243 
00244 
00245 
00246 
00247 
00248         ModifiedRodriguezParameters mrpRate;
00249         AttitudeModels MRPRate;
00250         MRPRate.MRPKinematic( mrpError, angularRateError, mrpRate );
00251 
00252         
00253         Vector ueq(3);
00254 
00255         ueq = m_estimateBinv*( -estimatef + RBR.GetDCM( )*(m_angularAccelReference)
00256                 - skew( angularRate )*RBR.GetDCM( )*(m_angularRateReference) - m_gainMRPRate*mrpRate 
00257                 - m_gainMRPError*mrpError ); 
00258         
00259         
00260         
00261         
00262         
00263         
00264         
00265 
00266         
00267         Vector s(3);
00268         double dt = 0.5;
00269 
00270         
00271         
00272 
00273         
00274 
00275         
00276         
00277 
00278         s = angularRateError + m_gainMRPRate*mrpError + m_gainMRPError*mrpError*dt;
00279         
00280 
00281         
00282         Vector sat(3);
00283         sat = Saturation( s, m_phi );
00284         
00285         
00286         Vector D_s(3);
00287         D_s = A*hs;
00288         
00289         Vector one(3);
00290         one(1) = 1;
00291         one(2) = 1;
00292         one(3) = 1;
00293         
00294         Vector F(3);
00295 
00296 
00297 
00298 
00299 
00300 
00301 
00302 
00303         F = matrixInv3x3( m_whorl->GetMOI( ) )*Vabs( ( -skew( angularRate )*m_D_I + m_D_I*skew( angularRate ) + m_D_I*skew( angularRate )*m_D_I )*m_whorl->GetMOI( )*angularRate
00304                 + ( -skew( angularRate )*m_D_D + m_D_I*skew( angularRate ) + m_D_I*skew( angularRate )*m_D_D )*D_s
00305                 + ( eye(3) + m_D_I )*m_torqueMax*one  );
00306 
00307 cout << "F: " << F << endl;
00308 
00309 
00310 
00311 
00312 
00313 
00314 
00315 
00316         
00317         Vector K(3);
00318         K = matrixInv3x3( eye(3) - m_D_B )*( F + m_D_B*(Vabs( estimatef - RBR.GetDCM( )*(m_angularAccelReference)
00319                 + skew( angularRate )*RBR.GetDCM( )*(m_angularRateReference) + m_gainMRPRate*mrpRate
00320                 + m_gainMRPError*mrpError ) ) + m_eta );
00321 
00322 
00323 
00324 
00325 
00326         
00327 
00328         Matrix matK(3,3);
00329         matK(1,1) = K(1); 
00330         matK(2,2) = K(2); 
00331         matK(3,3) = K(3); 
00332 cerr << "K: " << ~K << endl;
00333 
00334         
00335         Vector urob(3);
00336         urob = m_estimateBinv*matK*sat; 
00337 
00338 
00339         
00340 
00341         
00342 
00343         
00344         m_controlTorque = ( ueq - urob ); 
00345         cout << "control before A: " << ~m_controlTorque << endl;
00346         m_controlTorque = ~A*m_controlTorque; 
00347 
00348         cout << "A: " << A << endl;
00349         cout << "A inv: " << (~A) << endl;
00350         cout << "eq: " << ~ueq << endl;
00351         cout << "rob: " << ~urob << endl;
00352 
00353         cout << "control after A: " << ~m_controlTorque << endl;
00354 
00355         m_controlTorque = WheelSaturation( m_controlTorque );
00356         
00357         cout << "control after Wheel Sat: " << ~m_controlTorque << endl;
00358         
00359         
00360         m_whorl->SetControl( m_controlTorque ); 
00361 
00362         
00363         SetWheelTorque( m_controlTorque ); 
00364 
00365         return( 0 );
00366 }
00367 
00368 
00369 
00370 
00371 
00372 
00373 
00374 
00375 
00376 
00377 
00378 
00379 
00380