00001 /* DGEMM.F -- translated by f2c (version 19941215). 00002 You must link the resulting object file with the libraries: 00003 -lf2c -lm (in that order) 00004 */ 00005 00006 #include "f2c.h" 00007 #include "cblasimpexp.h" 00008 00009 /* *********************************************************************** */ 00010 00011 /* File of the DOUBLE PRECISION Level-3 BLAS. */ 00012 /* ========================================== */ 00013 00014 /* SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, */ 00015 /* $ BETA, C, LDC ) */ 00016 00017 /* SUBROUTINE DSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, */ 00018 /* $ BETA, C, LDC ) */ 00019 00020 /* SUBROUTINE DSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, */ 00021 /* $ BETA, C, LDC ) */ 00022 00023 /* SUBROUTINE DSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, */ 00024 /* $ BETA, C, LDC ) */ 00025 00026 /* SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, */ 00027 /* $ B, LDB ) */ 00028 00029 /* SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, */ 00030 /* $ B, LDB ) */ 00031 00032 /* See: */ 00033 00034 /* Dongarra J. J., Du Croz J. J., Duff I. and Hammarling S. */ 00035 /* A set of Level 3 Basic Linear Algebra Subprograms. Technical */ 00036 /* Memorandum No.88 (Revision 1), Mathematics and Computer Science */ 00037 /* Division, Argonne National Laboratory, 9700 South Cass Avenue, */ 00038 /* Argonne, Illinois 60439. */ 00039 00040 00041 /* *********************************************************************** */ 00042 00043 /* Subroutine */ int __IMPEXP__ dgemm_(transa, transb, m, n, k, alpha, a, lda, b, ldb, 00044 beta, c, ldc, transa_len, transb_len) 00045 char *transa, *transb; 00046 integer *m, *n, *k; 00047 doublereal *alpha, *a; 00048 integer *lda; 00049 doublereal *b; 00050 integer *ldb; 00051 doublereal *beta, *c; 00052 integer *ldc; 00053 ftnlen transa_len; 00054 ftnlen transb_len; 00055 { 00056 /* System generated locals */ 00057 integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 00058 i__3; 00059 00060 /* Local variables */ 00061 static integer info; 00062 static logical nota, notb; 00063 static doublereal temp; 00064 static integer i, j, l, ncola; 00065 extern logical lsame_(); 00066 static integer nrowa, nrowb; 00067 extern /* Subroutine */ int xerbla_(); 00068 00069 /* .. Scalar Arguments .. */ 00070 /* .. Array Arguments .. */ 00071 /* .. */ 00072 00073 /* Purpose */ 00074 /* ======= */ 00075 00076 /* DGEMM performs one of the matrix-matrix operations */ 00077 00078 /* C := alpha*op( A )*op( B ) + beta*C, */ 00079 00080 /* where op( X ) is one of */ 00081 00082 /* op( X ) = X or op( X ) = X', */ 00083 00084 /* alpha and beta are scalars, and A, B and C are matrices, with op( A ) 00085 */ 00086 /* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. 00087 */ 00088 00089 /* Parameters */ 00090 /* ========== */ 00091 00092 /* TRANSA - CHARACTER*1. */ 00093 /* On entry, TRANSA specifies the form of op( A ) to be used in 00094 */ 00095 /* the matrix multiplication as follows: */ 00096 00097 /* TRANSA = 'N' or 'n', op( A ) = A. */ 00098 00099 /* TRANSA = 'T' or 't', op( A ) = A'. */ 00100 00101 /* TRANSA = 'C' or 'c', op( A ) = A'. */ 00102 00103 /* Unchanged on exit. */ 00104 00105 /* TRANSB - CHARACTER*1. */ 00106 /* On entry, TRANSB specifies the form of op( B ) to be used in 00107 */ 00108 /* the matrix multiplication as follows: */ 00109 00110 /* TRANSB = 'N' or 'n', op( B ) = B. */ 00111 00112 /* TRANSB = 'T' or 't', op( B ) = B'. */ 00113 00114 /* TRANSB = 'C' or 'c', op( B ) = B'. */ 00115 00116 /* Unchanged on exit. */ 00117 00118 /* M - INTEGER. */ 00119 /* On entry, M specifies the number of rows of the matrix 00120 */ 00121 /* op( A ) and of the matrix C. M must be at least zero. 00122 */ 00123 /* Unchanged on exit. */ 00124 00125 /* N - INTEGER. */ 00126 /* On entry, N specifies the number of columns of the matrix 00127 */ 00128 /* op( B ) and the number of columns of the matrix C. N must be 00129 */ 00130 /* at least zero. */ 00131 /* Unchanged on exit. */ 00132 00133 /* K - INTEGER. */ 00134 /* On entry, K specifies the number of columns of the matrix 00135 */ 00136 /* op( A ) and the number of rows of the matrix op( B ). K must 00137 */ 00138 /* be at least zero. */ 00139 /* Unchanged on exit. */ 00140 00141 /* ALPHA - DOUBLE PRECISION. */ 00142 /* On entry, ALPHA specifies the scalar alpha. */ 00143 /* Unchanged on exit. */ 00144 00145 /* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is 00146 */ 00147 /* k when TRANSA = 'N' or 'n', and is m otherwise. */ 00148 /* Before entry with TRANSA = 'N' or 'n', the leading m by k 00149 */ 00150 /* part of the array A must contain the matrix A, otherwise 00151 */ 00152 /* the leading k by m part of the array A must contain the 00153 */ 00154 /* matrix A. */ 00155 /* Unchanged on exit. */ 00156 00157 /* LDA - INTEGER. */ 00158 /* On entry, LDA specifies the first dimension of A as declared 00159 */ 00160 /* in the calling (sub) program. When TRANSA = 'N' or 'n' then 00161 */ 00162 /* LDA must be at least max( 1, m ), otherwise LDA must be at 00163 */ 00164 /* least max( 1, k ). */ 00165 /* Unchanged on exit. */ 00166 00167 /* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is 00168 */ 00169 /* n when TRANSB = 'N' or 'n', and is k otherwise. */ 00170 /* Before entry with TRANSB = 'N' or 'n', the leading k by n 00171 */ 00172 /* part of the array B must contain the matrix B, otherwise 00173 */ 00174 /* the leading n by k part of the array B must contain the 00175 */ 00176 /* matrix B. */ 00177 /* Unchanged on exit. */ 00178 00179 /* LDB - INTEGER. */ 00180 /* On entry, LDB specifies the first dimension of B as declared 00181 */ 00182 /* in the calling (sub) program. When TRANSB = 'N' or 'n' then 00183 */ 00184 /* LDB must be at least max( 1, k ), otherwise LDB must be at 00185 */ 00186 /* least max( 1, n ). */ 00187 /* Unchanged on exit. */ 00188 00189 /* BETA - DOUBLE PRECISION. */ 00190 /* On entry, BETA specifies the scalar beta. When BETA is 00191 */ 00192 /* supplied as zero then C need not be set on input. */ 00193 /* Unchanged on exit. */ 00194 00195 /* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */ 00196 /* Before entry, the leading m by n part of the array C must 00197 */ 00198 /* contain the matrix C, except when beta is zero, in which 00199 */ 00200 /* case C need not be set on entry. */ 00201 /* On exit, the array C is overwritten by the m by n matrix 00202 */ 00203 /* ( alpha*op( A )*op( B ) + beta*C ). */ 00204 00205 /* LDC - INTEGER. */ 00206 /* On entry, LDC specifies the first dimension of C as declared 00207 */ 00208 /* in the calling (sub) program. LDC must be at least 00209 */ 00210 /* max( 1, m ). */ 00211 /* Unchanged on exit. */ 00212 00213 00214 /* Level 3 Blas routine. */ 00215 00216 /* -- Written on 8-February-1989. */ 00217 /* Jack Dongarra, Argonne National Laboratory. */ 00218 /* Iain Duff, AERE Harwell. */ 00219 /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ 00220 /* Sven Hammarling, Numerical Algorithms Group Ltd. */ 00221 00222 00223 /* .. External Functions .. */ 00224 /* .. External Subroutines .. */ 00225 /* .. Intrinsic Functions .. */ 00226 /* .. Local Scalars .. */ 00227 /* .. Parameters .. */ 00228 /* .. */ 00229 /* .. Executable Statements .. */ 00230 00231 /* Set NOTA and NOTB as true if A and B respectively are not 00232 */ 00233 /* transposed and set NROWA, NCOLA and NROWB as the number of rows 00234 */ 00235 /* and columns of A and the number of rows of B respectively. 00236 */ 00237 00238 /* Parameter adjustments */ 00239 a_dim1 = *lda; 00240 a_offset = a_dim1 + 1; 00241 a -= a_offset; 00242 b_dim1 = *ldb; 00243 b_offset = b_dim1 + 1; 00244 b -= b_offset; 00245 c_dim1 = *ldc; 00246 c_offset = c_dim1 + 1; 00247 c -= c_offset; 00248 00249 /* Function Body */ 00250 nota = lsame_(transa, "N", 1L, 1L); 00251 notb = lsame_(transb, "N", 1L, 1L); 00252 if (nota) { 00253 nrowa = *m; 00254 ncola = *k; 00255 } else { 00256 nrowa = *k; 00257 ncola = *m; 00258 } 00259 if (notb) { 00260 nrowb = *k; 00261 } else { 00262 nrowb = *n; 00263 } 00264 00265 /* Test the input parameters. */ 00266 00267 info = 0; 00268 if (! nota && ! lsame_(transa, "C", 1L, 1L) && ! lsame_(transa, "T", 1L, 00269 1L)) { 00270 info = 1; 00271 } else if (! notb && ! lsame_(transb, "C", 1L, 1L) && ! lsame_(transb, 00272 "T", 1L, 1L)) { 00273 info = 2; 00274 } else if (*m < 0) { 00275 info = 3; 00276 } else if (*n < 0) { 00277 info = 4; 00278 } else if (*k < 0) { 00279 info = 5; 00280 } else if (*lda < max(1,nrowa)) { 00281 info = 8; 00282 } else if (*ldb < max(1,nrowb)) { 00283 info = 10; 00284 } else if (*ldc < max(1,*m)) { 00285 info = 13; 00286 } 00287 if (info != 0) { 00288 xerbla_("DGEMM ", &info, 6L); 00289 return 0; 00290 } 00291 00292 /* Quick return if possible. */ 00293 00294 if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) { 00295 return 0; 00296 } 00297 00298 /* And if alpha.eq.zero. */ 00299 00300 if (*alpha == 0.) { 00301 if (*beta == 0.) { 00302 i__1 = *n; 00303 for (j = 1; j <= i__1; ++j) { 00304 i__2 = *m; 00305 for (i = 1; i <= i__2; ++i) { 00306 c[i + j * c_dim1] = 0.; 00307 /* L10: */ 00308 } 00309 /* L20: */ 00310 } 00311 } else { 00312 i__1 = *n; 00313 for (j = 1; j <= i__1; ++j) { 00314 i__2 = *m; 00315 for (i = 1; i <= i__2; ++i) { 00316 c[i + j * c_dim1] = *beta * c[i + j * c_dim1]; 00317 /* L30: */ 00318 } 00319 /* L40: */ 00320 } 00321 } 00322 return 0; 00323 } 00324 00325 /* Start the operations. */ 00326 00327 if (notb) { 00328 if (nota) { 00329 00330 /* Form C := alpha*A*B + beta*C. */ 00331 00332 i__1 = *n; 00333 for (j = 1; j <= i__1; ++j) { 00334 if (*beta == 0.) { 00335 i__2 = *m; 00336 for (i = 1; i <= i__2; ++i) { 00337 c[i + j * c_dim1] = 0.; 00338 /* L50: */ 00339 } 00340 } else if (*beta != 1.) { 00341 i__2 = *m; 00342 for (i = 1; i <= i__2; ++i) { 00343 c[i + j * c_dim1] = *beta * c[i + j * c_dim1]; 00344 /* L60: */ 00345 } 00346 } 00347 i__2 = *k; 00348 for (l = 1; l <= i__2; ++l) { 00349 if (b[l + j * b_dim1] != 0.) { 00350 temp = *alpha * b[l + j * b_dim1]; 00351 i__3 = *m; 00352 for (i = 1; i <= i__3; ++i) { 00353 c[i + j * c_dim1] += temp * a[i + l * a_dim1]; 00354 /* L70: */ 00355 } 00356 } 00357 /* L80: */ 00358 } 00359 /* L90: */ 00360 } 00361 } else { 00362 00363 /* Form C := alpha*A'*B + beta*C */ 00364 00365 i__1 = *n; 00366 for (j = 1; j <= i__1; ++j) { 00367 i__2 = *m; 00368 for (i = 1; i <= i__2; ++i) { 00369 temp = 0.; 00370 i__3 = *k; 00371 for (l = 1; l <= i__3; ++l) { 00372 temp += a[l + i * a_dim1] * b[l + j * b_dim1]; 00373 /* L100: */ 00374 } 00375 if (*beta == 0.) { 00376 c[i + j * c_dim1] = *alpha * temp; 00377 } else { 00378 c[i + j * c_dim1] = *alpha * temp + *beta * c[i + j * 00379 c_dim1]; 00380 } 00381 /* L110: */ 00382 } 00383 /* L120: */ 00384 } 00385 } 00386 } else { 00387 if (nota) { 00388 00389 /* Form C := alpha*A*B' + beta*C */ 00390 00391 i__1 = *n; 00392 for (j = 1; j <= i__1; ++j) { 00393 if (*beta == 0.) { 00394 i__2 = *m; 00395 for (i = 1; i <= i__2; ++i) { 00396 c[i + j * c_dim1] = 0.; 00397 /* L130: */ 00398 } 00399 } else if (*beta != 1.) { 00400 i__2 = *m; 00401 for (i = 1; i <= i__2; ++i) { 00402 c[i + j * c_dim1] = *beta * c[i + j * c_dim1]; 00403 /* L140: */ 00404 } 00405 } 00406 i__2 = *k; 00407 for (l = 1; l <= i__2; ++l) { 00408 if (b[j + l * b_dim1] != 0.) { 00409 temp = *alpha * b[j + l * b_dim1]; 00410 i__3 = *m; 00411 for (i = 1; i <= i__3; ++i) { 00412 c[i + j * c_dim1] += temp * a[i + l * a_dim1]; 00413 /* L150: */ 00414 } 00415 } 00416 /* L160: */ 00417 } 00418 /* L170: */ 00419 } 00420 } else { 00421 00422 /* Form C := alpha*A'*B' + beta*C */ 00423 00424 i__1 = *n; 00425 for (j = 1; j <= i__1; ++j) { 00426 i__2 = *m; 00427 for (i = 1; i <= i__2; ++i) { 00428 temp = 0.; 00429 i__3 = *k; 00430 for (l = 1; l <= i__3; ++l) { 00431 temp += a[l + i * a_dim1] * b[j + l * b_dim1]; 00432 /* L180: */ 00433 } 00434 if (*beta == 0.) { 00435 c[i + j * c_dim1] = *alpha * temp; 00436 } else { 00437 c[i + j * c_dim1] = *alpha * temp + *beta * c[i + j * 00438 c_dim1]; 00439 } 00440 /* L190: */ 00441 } 00442 /* L200: */ 00443 } 00444 } 00445 } 00446 00447 return 0; 00448 00449 /* End of DGEMM . */ 00450 00451 } /* dgemm_ */ 00452